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The generalized matching law can be applied to a signal-detection matrix to give two equa-
tions. The first relates responding in the presence of the stimulus to the reinforcements for
the responses, and the second relates responding in the absence of the stimulus to the re-
inforcements for the responses. Evidence for stimulus discrimination is given by biases that
are opposite in sign in the two equations. As the logarithmic ratio and z proportion
transformations are similar, the combination of the absolute values of the two logarithmic
biases gives a measure equivalent to the signal-detection measures d' and 'O. The two
equations can also be combined to eliminate the biases caused by the signalling stimuli
and to produce a generalized matching-law statement relating overall performance to the
obtained reinforcements.
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Over the past two decades, two areas of
psychology have rapidly proceeded toward
quantification. Signal-detection theory (Green
and Swets, 1966) has been concerned with
measuring the control of stimuli over behav-
ior, while the matching law (Herrnstein, 1970),
and more latterly the generalized matching
law (Baum, 1974), describe how behavior is
distributed over choice alternatives according
to the reinforcement for the choice alternatives.
In this paper we shall show the relation be-
tween these two fields of endeavor and, more
specifically, show how applications of the gen-
eralized matching law can provide a measure
of both discrimination and overall response
bias. We shall proceed by discussing the
generalized matching law before moving to
an analysis of its relation to signal-detection
theory.

The Generalized Matching Law
The usual statement of the generalized

matching law (Baum, 1974) is:

(1),

where P1 and P2 are the numbers of responses
emitted to each of two keys or key colors, and

'Thanks for many informative and enjoyable discus-
sions with Geoff Bridgman, John Irwin, Dianne Mc-
Carthy, and Mel Pipe. Reprints nmay be obtained from
the authors, Department of Psychology, University of
Auckland, Private Bag, Auckland, New Zealand.

R1 and R2 are the numbers of reinforcements
obtained on them. The parameter c is known
as bias. Bias refers to the tendency for the
animal to emit proportionally more responses
on one key than on the other when equal re-
inforcements are obtained, and to maintain
this proportional preference over and above
the behavior changes associated with reinforce-
ment ratios greater or less than 1.0. The
parameter a describes the sensitivity of the
ratio allocation of responses to changes in the
ratio of obtained reinforcements. If a = 1,
then apart from bias, the response ratio
matches the reinforcement ratio; if a = 0, the
response ratio is insensitive to changes in the
reinforcement ratio; if a = oo, responses are
exclusively to the key on which the higher re-
inforcement rate is available (Lander and
Irwin, 1968).
The usual way of estimating the values of

a and c in Equation 1 is to fit a straight line
by the method of least squares to the logarith-
mic form of the equation:

log (P, / P2) = a log (R1/R2) + log c (2).
Usual value of a for concurrent variable-inter-
val schedules is between 0.8 and 1.0 (Lobb and
Davison, 1975; Myers and Myers, 1977). This
value is similar to that found as a Stevens Law
exponent for estimation of time by animals
(Catania, 1970) and humans (Eisler, 1976).

Signal-detection analyses are more often car-
ried out using logistic transformations, rather
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than logarithmic transformations. The mea-
sure log (x/ 1 - x), where x is a probability or
a proportion, is the logistic transformation
(Bush, 1963; Fisher and Yates, 1963). Now,
Equation 2 can be rewritten, defining p as
the proportion of responses occurring on key
1, and r as the proportion of reinforcements
obtained on key 1:

log (p/1 -p) = a log (r/ 1 -r) + log c,

or as:
logit C = a logit E + log c,

where C is proportional choice and E is pro-
portional environmental effects. In other
words, the logarithmic transformation of the
ratio of two numbers is the logistic transfor-
mation.
Bush (1963) demonstrated a close relation

between the logistic transformation and the z-
or cumulative-normal transformation used ex-
tensively by Green and Swets (1966) in their
signal-detection analyses. Dusoir (1975) and
Ogilvie and Creelman (1968) also point out
that the results of a logistic analysis of signal-
detection data are difficult to discriminate
from a z-transform analysis. Thus, the differ-
ent data transformations (log, z) used in the
generalized matching law and signal-detection
analyses lead to no fundamental difference in
the results of the analyses, except insofar as
the units of the derived measures differ.

The Generalized Matching Law
Applied to Signal Detection

In signal-detection experiments, a stimulus
is presented on some choice trials. If this stim-
ulus is discriminated, and the animal emits
the correct response, reinforcement is obtained.
Correct responses consist either of reporting
the presence of the stimulus (hit) or its ab-
sence (correct rejection). Incorrect responses
consist of either reporting the stimulus as pres-
ent when it was absent (false alarm) or of re-
porting it absent when it was present (false re-
jection). In the usual generalized matching-law
experiment, only two responses are counted.
Because of the added stimulus dimension in
signal-detection experiments, four response
classes are defined and recorded. The two re-
sponses (yes, no) and the two stimulus condi-
tions (present, absent) define the columns and
rows of a 2 x 2 matrix. This matrix is shown
in Figure 1 with the frequencies (not the prob-
abilities) of each event shown in each cell.

RESPONSE
"YES" "NO"

zHIT FALSE
wz REJ.wn w

-Jc
,F FALSE CORRECT
_ ALARM REJ.

Fig. 1. The matrix of stimulus and response events
from a signal-detection experiment. The numbers of
events occurring in each cell are shown by the letters
w, x, y, and z.

The generalized matching law relates the
ratio of frequencies of two responses to the
ratio of frequencies of reinforcement for them.
In the typical signal-detection experiment,
every correct response is reinforced, so the
numbers w and z are the numbers of reinforce-
ments as well as the numbers of responses. The
generalized matching law predicts that the
ratio of yes to no responses will be controlled
by the reinforcement ratio (w/z), whether or
not the signalling stimuli are presented. If
the response ratios were analyzed without re-
gard to the presence or absence of the signal-
ling stimuli, we would obtain:

logs 1= a log (- + log c
xx+z / z (3),

where c is a bias (Baum, 1974) toward emitting
one of the two responses.

If the subject fails to discriminate the pres-
ence from the absence of the stimulus, the
same overall response bias (log c in Equation
3) should be shown in the performance when
the stimulus is present and when it is absent.
However, if the subject's behavior is controlled
by the presence and absence of the stimulus,
the behavior will be biased toward saying yes
when the stimulus is present, and toward say-
ing no when it is absent. Assuming, therefore,
that (1) the emission of yes and no responses
is controlled by the reinforcements for these
responses; (2) that the performance may, for
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extraneous reasons, be biased toward one or
the other response; and (3) that the presence
or absence of a signalling stimulus will bias
performance toward the response yes in the
stimulus and toward no in its absence, we can
write two equations. In the presence of the
stimulus,

log (-) = a. log(.z ) + log c + log d (4),

and in the absence of the stimulus,

log (Y) = ar log( w) + log c - log d (5),

where log d is the bias caused by the signalling
stimulus, and ar is the sensitivity to reinforce-
ment. The stimulus bias term is negative in
the second equation because the bias in the
absence of the stimulus is toward saying no,
while Equation 5 has yes responses as the
numerator.

Preserving the form of the matrix in Figure
1, Equations 4 and 5 can be generalized to the
case in which reinforcements are intermit-
tently scheduled for responses. The appro-
priate design here is a multiple (concurrent
variable-interval extinction) (concurrent ex-
tinction variable-interval) schedule in which
the component currently providing reinforce-
ment is signalled. If P refers to responses and
R to reinforcements, subscripted as in Figure 1,

log(p)=a 1og(R )+logc+logd (6)

and

log( ) =aa log Rw +logc-logd (7).

We shall further assume that the bias (log d)
caused by the signalling stimuli is a function
of the ratio of the physical stimuli (S1/S2)
signalling the availability of reinforcement,
and that under conditions where stimulus dif-
ferences are manipulated these would change
behavior with a sensitivity a,. Thus,

log(PW) =a log RW)+a log (s) +logc

(8).
and

log(P.=aa log )- a5 log(S) +logc

The stimulus aspect of these equations is con-

sistent with the generalized matching-law ap-

proach and is, in fact, a statement of Stevens
Law (Stevens, 1957).

If Equation 9 is subtracted from Equation
8, assuming that the sensitivities to reinforce-
ment ar and to stimuli a8 are the same in the
presence and in the absence of the stimuli,
we obtain, after some rearrangement:

log (P) = log (p) + 2a. log (S) (10).

This equation is an isosensitivity curve that
shows the covariation of correct responses in
the stimulus with incorrect responses in its
absence when reinforcement rates are varied
but the stimuli are kept constant. It is analo-
gous to Green and Swets' (1966) isosensitivity
equation which, in the present notation is:

(1 1),

or, cast into logs,

log( )_ = a log (py) + log(d').

Bush, Luce, and Rose (1964) and Luce (1963)
derived a similar equation which, if S, and S2
are symmetrically similar, can be written in
the present notation:2

P . Py = 12.
PW s

Rearranging and taking logs:

log p) = log (p') -2 log7 (12).

Since q is defined as falling between 0 and 1,
the term -2 log -q will be positive. Equation
12 is therefore also analogous to Equation 10.

It is of particular interest that essentially
the same equation describing the isosensitivity
relation in signal detection can be derived
from considerations of asymptotic schedule
performance (the generalized matching law),
from considerations of theoretical stimulus
distributions (Green and Swets, 1966), and
from the asymptotic behavior of linear op-
erator models for learning (Bush et al., 1964).
From the point of view of the generalized
matching law, interest centers on the way in
which the measure of discriminability is in-
dependent of both response bias (log c) and
the ratio of reinforcements obtained for the

2Many thanks to Tony Nevin who pointed out that
a similar approach had been taken by Luce and his
co-workers.
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two responses, given the above assumptions. If,
for constant stimuli, the discrimination term
in Equation 10 was not constant, an analysis
using Equations 8 and 9 would help show
which assumption was not met. Summarizing
Equation 10, we can say that the signal-
detection measure of discriminability is inde-
pendent of both response bias and reinforce-
ments, and that the measure is a combination
of two generalized matching law biases, bias
for saying yes in the stimulus and for saying
no in its absence.

Equations 8 and 9 can also be added to
produce the equivalent of an isobias function:

log (iP.) +log (p) = 2a, log ±R+ 2 log c (13).

Bush et al. (1964) gave a similar isobias func-
tion derived from their linear operator model.
They stated, in the present terminology,

log (p) + log PY -2 log b.

Again, b is bounded by 0 and 1, so the term
-2 log b is positive. Luce (1963) related b to
the payoffs and instructions in the experiment,
and thus it is equivalent to the reinforcement
term in Equation 13. The difference between
Luce's equation and Equation 13 is the pro-
vision in the latter for a term measuring re-
sponse bias caused by extraneous factors.
The right-hand side of Equation 13 is the

standard generalized matching-law combina-
tion.'The left of the equation, while it mea-
sures the behavior of saying yes relative to
saying no, is different from the simple summa-
tion of yesses and nos in Equation 3. It is,
rather, the concatenation of the yes to no
ratios in the presence and the absence of the
stimulus according to the same rules given by
Baum and Rachlin (1969) for the combination
of behavior-effecting independent variables.
This suggests that the application of the gen-
eralized matching law to the signal-detection
matrix using Equation 3 would be incorrect,
and that Equation 13 should be used.
An interesting possibility occurs here. If

the existence of different controlling stimuli
at different times requires the summation of
the log ratios, rather than the log of the sum
of responses, for a generalized matching-law
fit, our usual measures of responding in con-
current schedules would be in error if there
were discriminable periods of different rein-

forcement rates. Some VI schedules may pro-
vide predictably different reinforcement rates
immediately after reinforcement, compared
with those rates longer times after reinforce-
ment. Some may even specify no reinforcement
availability immediately after a reinforcement.
If performance is measured simply as sums of
responses, discriminable periods like this will
give an undermatching relation to the ratio
of reinforcements. Baum (personal communi-
cation) has wondered why this laboratory
more often finds undermatching in concurrent
schedules than his own laboratory. The reason
could be that we use arithmetic variable-inter-
val schedules in which the shortest interval is
directly related to the average interval. As a
result, the possibly discriminable periods of
no reinforcement after a reinforcement has
been obtained would get relatively longer with
greater differences in reinforcement rates for
the two responses. This explanation of under-
matching in terms of an unwanted discrimina-
tion appears to conflict with Baum's (1974)
explanation in terms of lack of discriminabil-
ity between components.
Both of these explanations could be correct.

Baum (1974) suggested that the exponent of
Equation 1 (sensitivity) would decrease if
animals could not discriminate the compo-
nents (presumably either stimulus or reinforce-
ment aspects) of a concurrent schedule. The
present account suggests that bias in the pres-
ence and absence of the stimulus varied when
stimuli were changed. Why should changing
the stimuli affect sensitivity in one case and
not in the other? The usual concurrent sched-
ule requires stimulus control of the choice
response (it must be clear, for example, which
of the two responses the animal is emitting)
and control by differences in the reinforcement
rates for the two responses. If stimulus control
of the choice response is lost because the de-
fining stimuli become more similar, sensitivity
of the response to reinforcement must also be
lost, as it will become unclear which response
produced reinforcement. Signal detection re-
quires that the discrimination between the
choice responses and between the reinforce-
ments is precise, and it adds a further stimulus
(the signal) that provides information on which
response will be reinforced at any time. The
present paper discussed variations in the sig-
nal, while Baum (1974) discussed variations in
the stimulus control of the choice response.
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It is clear that in a signal-detection experi-
ment, when the presence and the absence of
the signal cannot be discriminated, the choice
response can still be sensitive to reinforcement
changes.

Date Analysis
Two sets of data were analyzed in Table 1

to illustrate the use of the equations developed
here. The first data were reported by Green
and Swets (1966, p. 90) and were obtained
from a human by varying the probability of a

signal while maintaining constant outcomes
for correct responses. The second set of data
was reported by Stubbs (1976) from an experi-
ment in which three pigeons discriminated
short- and long-duration stimuli. Three anal-
yses were carried out. The first used Equations
4 and 5 and was done to show that opposing
biases were produced in the stimulus-present
and absent conditions. The data were fitted to
each equation by the method of least squares,

giving values of ar and a composite additive
constant (log c + log d). The second analysis

used Equation 10 in the same way, and values
for the term 2a8 log(S1/S2) were obtained. The
value of this term is, of course, also the ob-
tained value of -2 logqi in Equation 12. Fi-
nally, a traditional analysis using z-transforms
of response probabilities (Equation 11) was
carried out, and obtained values of d' are
shown in Table 1, both in the usual units
(standard deviations) and, to aid comparison,
in the logarithmic equivalents.
Table 1 shows that an analysis by Equations

4 and 5 accounted for 95% or more of the
data variance for each subject. The sensitivities
to reinforcement, ar, were generally similar
for stimulus present and stimulus absent (or
short versus long durations), and in each case
there was a strong bias toward emitting the
yes response in the stimulus, and away from
emitting this response in its absence. If the
additive constants (log c + log d) were equal
in absolute value, there would be no response
bias (log c). The additive constants were ap-
proximately equal for all subjects except
Stubbs' Bird 2, which showed a strong bias
toward reporting the short stimulus.

ble 1

Analysis of data reported by Green and Swets (1966) and by Stubbs (1976) according to
Equations 4 and 5, Equation 10 and Equation 11. VAC is the percentage of data variance
accounted for by the least-squares fitted lines.

1. Equations 4 and 5
Author Stimulus a, log c+log d VAC

Green & Swets Present 0.49 0.34 99
Absent 0.48 -0.29 99

Stubbs-62 Short 0.54 0.61 98
Long 0.71 -0.55 98

63 Short 0.83 0.64 99
Long 0.79 -0.46 98

2 Short 0.93 0.79 99
Long 0.41 -0.36 95

2. Equation 10
Author Slope 2a, log (S,/S2) VAC

Green & Swets 0.96 0.64 97
Stubbs-62 1.05 1.14 92

63 1.10 1.14 99
2 2.50 1.56 80

3. Equation 11
Author Slope d' (z-units) d' (log units) VAC

Green & Swets 1.00 0.87 0.62 99
Stubbs-62 1.09 1.55 1.19 86

63 1.17 1.53 1.17 97
2 2.25 1.98 1.61 76
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The analysis by Equation 10, shown in Ta-
ble 1, gave good fits for all subjects except
Stubbs' Bird 2. The intercepts of the fitted
lines gave values of 2a8 log(Sl/S2) or -2 log -q
that were much the same as the values of d',
transformed into logs, obtained from the usual
z-transform analysis. The data for Stubbs' Bird
2 suggest that the assumption that the sensi-
tivity to reinforcement in the presence and
absence of the signal was the same may not
always be met.

Conclusion
We have shown how the measure of dis-

criminability suggested by Green and Swets
(1966) and by Luce and his coworkers (Bush,
Luce, and Rose, 1964; Luce, 1959, 1963) can
be derived also from applications of the gen-
eralized matching law to the signal-detection
matrix. We believe that the present formula-
tion offers some advantages over the previous
models. First, it easily encompasses intermit-
tent reinforcement. Second, it shows how re-
sponse bias can enter into the isobias curve.
Third, it makes the role of reinforcement in
signal detection more clear, especially in Equa-
tion 13. Fourth, it quantitatively relates two
areas of psycholoy that have been developing
apart (Nevin, 1969).
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